Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38573593

RESUMO

Neointimal hyperplasia causes the failure of coronary artery bypass grafting (CABG). Our previous studies have found that endothelial dysfunction is one candidate for triggering neointimal hyperplasia, but which factors are involved in this process is unclear. Glutathione S-transferase α4 (GSTA4) play an important role in metabolizing 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product, which causes endothelial dysfunction or death. Here, we investigated the role of GSTA4 in neointima formation after arteriovenous grafts (AVGs) with or without high-fat diet (HFD). Compared with normal diet (ND), HFD caused endothelial dysfunction and increased neointima formation, concomitantly accompanied by downregulated expression of GSTA4 at the mRNA and protein levels. In vitro, overexpression of GSTA4 attenuated 4-HNE-induced endothelial dysfunction and knockdown of GSTA4 aggravated endothelial dysfunction. Furthermore, silencing GSTA4 expression facilitated the activation of 4-HNE induced endoplasmic reticulum stress (ERS) and inhibition of ERS pathway alleviated 4-HNE-induced endothelial dysfunction. Additionally, compared with wild-type (WT) mice, mice with knockout of endothelial-specific GSTA4 (GSTA4 EC KO) exhibited exacerbated vascular endothelial dysfunction and increased neointima formation caused by HFD. Together, these results demonstrate the critical role of GSTA4 in protecting the function of endothelial cells and in alleviating hyperlipidemia-induced vascular neointimal hyperplasia in arteriovenous grafts.

3.
Int J Oral Sci ; 16(1): 32, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627388

RESUMO

Malocclusion, identified by the World Health Organization (WHO) as one of three major oral diseases, profoundly impacts the dental-maxillofacial functions, facial esthetics, and long-term development of ~260 million children in China. Beyond its physical manifestations, malocclusion also significantly influences the psycho-social well-being of these children. Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition, by mitigating the negative impact of abnormal environmental influences on the growth. Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development, ranging from fetal stages to the early permanent dentition phase. From an economic and societal standpoint, the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated, underlining its profound practical and social importance. This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children, emphasizing critical need for early treatment. It elaborates on corresponding core principles and fundamental approaches in early orthodontics, proposing comprehensive guidance for preventive and interceptive orthodontic treatment, serving as a reference for clinicians engaged in early orthodontic treatment.


Assuntos
Má Oclusão , Humanos , Criança , Consenso , Má Oclusão/epidemiologia , Assistência Odontológica , China
4.
Int Immunopharmacol ; 133: 112133, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652962

RESUMO

There is an increasing tendency for sepsis patients to suffer from diaphragm atrophy as well as mortality. Therefore, reducing diaphragm atrophy could benefit sepsis patients' prognoses. Studies have shown that Anisodamine (Anis) can exert antioxidant effects when blows occur. However, the role of Anisodamine in diaphragm atrophy in sepsis patients has not been reported. Therefore, this study investigated the antioxidant effect of Anisodamine in sepsis-induced diaphragm atrophy and its mechanism. We used cecal ligation aspiration (CLP) to establish a mouse septic mode and stimulated the C2C12 myotube model with lipopolysaccharide (LPS). After treatment with Anisodamine, we measured the mice's bodyweight, diaphragm weight, fiber cross-sectional area and the diameter of C2C12 myotubes. The malondialdehyde (MDA) levels in the diaphragm were detected using the oxidative stress kit. The expression of MuRF1, Atrogin1 and JAK2/STAT3 signaling pathway components in the diaphragm and C2C12 myotubes was measured by RT-qPCR and Western blot. The mean fluorescence intensity of ROS in C2C12 myotubes was measured by flow cytometry. Meanwhile, we also measured the levels of Drp1 and Cytochrome C (Cyt-C) in vivo and in vitro by Western blot. Our study revealed that Anisodamine alleviated the reduction in diaphragmatic mass and the loss of diaphragmatic fiber cross-sectional area and attenuated the atrophy of the C2C12 myotubes by inhibiting the expression of E3 ubiquitin ligases. In addition, we observed that Anisodamine inhibited the JAK2/STAT3 signaling pathway and protects mitochondrial function. In conclusion, Anisodamine alleviates sepsis-induced diaphragm atrophy, and the mechanism may be related to inhibiting the JAK2/STAT3 signaling pathway.

5.
Curr Med Chem ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504568

RESUMO

AIMS: This study aimed to improve personalized treatment strategies and predict survival outcomes for patients with uveal melanoma (UM). BACKGROUND: Copy number aberrations (CNAs) have been considered as a main feature of metastatic UM. OBJECTIVE: This study was designed to explore the feasibility of using copy number variation (CNV) in UM classification, prognosis stratification and treatment response. METHODS: The CNV data in the TCGA-UVM cohort were used to classify the samples. The differentially expressed genes (DEGs) between subtypes were screened by the "Limma" package. The module and hub genes related to aneuploidy score were identified by performing weighted gene co-expression network analysis (WGCNA) on the DEGs. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to train the hub genes for developing a prognosis model for UM. Finally, the expression levels of the screened prognostic key genes were verified in UM cells, and the cell migration and invasion abilities were detected using real-time quantitative PCR (qRT-PCR) and transwell assay. RESULTS: The UM samples were divided into 3 CNV subtypes, which differed significantly in overall survival (OS) and disease-specific survival (DSS). C1 had the shortest OS and DSS and the highest level of immune infiltration. A total of 2036 DEGs were obtained from the three subtypes. Eighty hub genes with the closest correlation with aneuploidy scores were selected by WGCNA. Univariate Cox and LASSO regression-based analyses finally determined eight genes as the key prognostic genes, including HES6, RNASEH2C, NQO1, NUDT14, TTYH3, GJC1, FKBP10, and MRPL24. A prognostic model was developed using the eight genes, demonstrating a strong prediction power. Differences in the response to immunotherapy among patients in different risk groups were significant. We found that high-risk patients were more sensitive to two drugs (Palbociclib_ 1054 and Ribociclib_1632), while low-risk patients were more sensitive to AZD1208_1449, ERK_2440_1713, Mirin_1048, and Selumetinib_1736. CONCLUSION: UM in this study was divided into three CNV subtypes, and a model based on eight aneuploidy score-related genes was established to evaluate the prognosis and drug treatment efficacy of UM patients. The current results may have the potential to help the clinical decision-making process for UM management.

6.
J Nanobiotechnology ; 22(1): 62, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360615

RESUMO

BACKGROUND: A large number of Fusobacterium nucleatum (Fn) are present in colorectal cancer (CRC) tissues of patients who relapse after chemotherapy, and Fn has been reported to promote oxaliplatin and 5-FU chemoresistance in CRC. Pathogens such as bacteria and parasites stimulate exosome production in tumor cells, and the regulatory mechanism of exosomal circRNA in the transmission of oxaliplatin and 5-FU chemotherapy resistance in Fn-infected CRC remains unclear. METHODS: Hsa_circ_0004085 was screened by second-generation sequencing of CRC tissues. The correlation between hsa_circ_0004085 and patient clinical response to oxaliplatin/5-FU was analyzed. Exosome tracing experiments and live imaging systems were used to test the effect of Fn infection in CRC on the distribution of hsa_circ_0004085. Colony formation, ER tracking analysis and immunofluorescence were carried out to verify the regulatory effect of exosomes produced by Fn-infected CRC cells on chemotherapeutic resistance and ER stress. RNA pulldown, LC-MS/MS analysis and RIP were used to explore the regulatory mechanism of downstream target genes by hsa_circ_0004085. RESULTS: First, we screened out hsa_circ_0004085 with abnormally high expression in CRC clinical samples infected with Fn and found that patients with high expression of hsa_circ_0004085 in plasma had a poor clinical response to oxaliplatin/5-FU. Subsequently, the circular structure of hsa_circ_0004085 was identified. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes produced by Fn-infected CRC cells transferred hsa_circ_0004085 between cells and delivered oxaliplatin/5-FU resistance to recipient cells by relieving ER stress. Hsa_circ_0004085 enhanced the stability of GRP78 mRNA by binding to RRBP1 and promoted the nuclear translocation of ATF6p50 to relieve ER stress. CONCLUSIONS: Plasma levels of hsa_circ_0004085 are increased in colon cancer patients with intracellular Fn and are associated with a poor response to oxaliplatin/5-FU. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes secreted by Fn-infected CRC cells deliver hsa_circ_0004085 between cells. Hsa_circ_0004085 relieves ER stress in recipient cells by regulating GRP78 and ATF6p50, thereby delivering resistance to oxaliplatin and 5-FU.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Exossomos , Ribonucleoproteínas Nucleares Heterogêneas Grupo L , MicroRNAs , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Oxaliplatina/metabolismo , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Cromatografia Líquida , Chaperona BiP do Retículo Endoplasmático , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Espectrometria de Massas em Tandem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , MicroRNAs/metabolismo , Proliferação de Células
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 19-23, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322526

RESUMO

The cellular response to mechanical stimuli depends largely on the structure of the cell itself and the abundance of intracellular cytomechanical proteins also plays a key role in the response to the stimulation of external mechanical signals. Liquid-liquid phase separation (LLPS) is the process by which proteins or protein-RNA complexes spontaneously separate and form two distinct "phases", ie, a low-concentration phase coexisting with a high-concentration phase. According to published findings, membrane-free organelles form and maintain their structures and regulate their internal biochemical activities through LLPS. LLPS, a novel mechanism for intracellular regulation of the biochemical reactions of biomacromolecules, plays a crucial role in modulating the responses of cytomechanical proteins. LLPS leads to the formation of highly concentrated liquid-phase condensates through multivalent interactions between biomacromolecules, thereby regulating a series of intracellular life activities. It has been reported that a variety of cytomechanical proteins respond to external mechanical signals through LLPS, which in turn affects biological behaviors such as cell growth, proliferation, spreading, migration, and apoptosis. Herein, we introduced the mechanisms of cytomechanics and LLPS. In addition, we presented the latest findings on cytomechanical protein phase separation, covering such issues as the regulation of focal adhesion maturation and mechanical signal transduction by LIM domain-containing protein 1 (LIMD1) phase separation, the regulation of intercellular tight junctions by zonula occludens (ZO) phase separation, and the regulation of cell proliferation and apoptosis by cytomechanical protein phase separation of the Hippo signaling pathway. The proposition of LLPS provides an explanation for the formation mechanism of intracellular membraneless organelles and supplies new approaches to understanding the biological functions of intracellular physiology or pathology. However, the molecular mechanisms by which LLPS drives focal adhesions and cell-edge dynamics are still not fully understood. It is not clear whether LLPS under in vitro conditions can occur under physiological conditions of organisms. There are still difficulties to be overcome in using LLPS to explain the interactions of multiple intracellular molecules. Researchers should pursue answers to these questions in the future.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , 60422 , Organelas/química , Organelas/metabolismo
8.
Front Physiol ; 15: 1337554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332988

RESUMO

Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity. Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells. Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model's ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step. Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model's performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage. Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers.

10.
Bone Res ; 12(1): 4, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263267

RESUMO

Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture, which increases patient susceptibility to fragile fractures. The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles (EVs), which play crucial roles in both pathological and physiological contexts. EVs derived from various sources exert distinct effects on osteoporosis. Specifically, EVs released by osteoblasts, endothelial cells, myocytes, and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins, miRNAs, and cytokines. Conversely, EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation. Furthermore, the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising. Here, we review the current understanding of the impact of EVs on bone homeostasis, including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis. Furthermore, we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs. Finally, we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Osteoporose , Humanos , Células Endoteliais , Densidade Óssea
11.
Int J Oral Sci ; 16(1): 4, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221571

RESUMO

Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias Bucais , Humanos , Qualidade de Vida , Biomarcadores , Comunicação Celular
12.
J Hypertens ; 42(4): 701-710, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230614

RESUMO

INTRODUCTION: Early prediction of preeclampsia (PE) is of universal importance in controlling the disease process. Our study aimed to assess the feasibility of using retinal fundus images to predict preeclampsia via deep learning in singleton pregnancies. METHODS: This prospective cohort study was conducted at Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine. Eligible participants included singleton pregnancies who presented for prenatal visits before 14 weeks of gestation from September 1, 2020, to February 1, 2022. Retinal fundus images were obtained using a nonmydriatic digital retinal camera during their initial prenatal visit upon admission before 20 weeks of gestation. In addition, we generated fundus scores, which indicated the predictive value of hypertension, using a hypertension detection model. To evaluate the predictive value of the retinal fundus image-based deep learning algorithm for preeclampsia, we conducted stratified analyses and measured the area under the curve (AUC), sensitivity, and specificity. We then conducted sensitivity analyses for validation. RESULTS: Our study analyzed a total of 1138 women, 92 pregnancies developed into hypertension disorders of pregnancy (HDP), including 26 cases of gestational hypertension and 66 cases of preeclampsia. The adjusted odds ratio (aOR) of the fundus scores was 2.582 (95% CI, 1.883-3.616; P  < 0.001). Otherwise, in the categories of prepregnancy BMI less than 28.0 and at least 28.0, the aORs were 3.073 (95%CI, 2.265-4.244; P  < 0.001) and 5.866 (95% CI, 3.292-11.531; P  < 0.001). In the categories of maternal age less than 35.0 and at least 35.0, the aORs were 2.845 (95% CI, 1.854-4.463; P  < 0.001) and 2.884 (95% CI, 1.794-4.942; P  < 0.001). The AUC of the fundus score combined with risk factors was 0.883 (sensitivity, 0.722; specificity, 0.934; 95% CI, 0.834-0.932) for predicting preeclampsia. CONCLUSION: Our study demonstrates that the use of deep learning algorithm-based retinal fundus images offers promising predictive value for the early detection of preeclampsia.


Assuntos
Aprendizado Profundo , Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/diagnóstico por imagem , Estudos Prospectivos , China , Hipertensão Induzida pela Gravidez/diagnóstico
13.
Cell Prolif ; 57(2): e13546, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37731335

RESUMO

Scaffold protein AF4/FMR2 family member 4 (AFF4) has been found to play a role in osteogenic commitment of stem cells. However, function of AFF4 in human periodontal ligament stem cells (hPDLSCs) has not been studied yet. This present study aims to investigate the biological effect of AFF4 on osteogenic differentiation of hPDLSCs and potential mechanistic pathway. First, AFF4 expression profile was evaluated in conditions of periodontitis and osteogenic differentiation of hPDLSCs by immunohistochemical staining, western blot and qRT-PCR. Next, si-RNA mediated knockdown and lentiviral transduction mediated overexpression of AFF4 were adopted to explore impact of AFF4 on osteogenic capacity of hPDLSCs. Then, possible mechanistic pathway was identified. At last, pharmacological agonist of autophagy, rapamycin, was utilized to affirm the role of autophagy in AFF4-regulated osteogenesis of hPDLSCs. First, AFF4 expressions were significantly lower in inflamed periodontal tissues and lipopolysaccharides-treated hPDLSCs than controls, and were up-regulated during osteogenic differentiation of hPDLSCs. Next, osteogenic potential of hPDLSCs was impaired by AFF4 knockdown and potentiated by AFF4 overexpression. Moreover, AFF4 was found to positively regulate autophagic activity in hPDLSCs. At last, rapamycin treatment was shown to be able to partly restore AFF4 knockdown-suppressed osteogenic differentiation. Our study demonstrates that AFF4 regulates osteogenic potential of hPDLSCs via targeting autophagic activity. The involvement of AFF4 in periodontal homeostasis was identified for the first time.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Diferenciação Celular , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular , Sirolimo/farmacologia , Células-Tronco , Serina-Treonina Quinases TOR , Fatores de Transcrição , Fatores de Elongação da Transcrição
14.
J Med Chem ; 66(24): 16694-16703, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38060985

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essentially involved in many biological processes of cancer cells, yet chemical intervention of NAD biosynthesis failed to obtain an optimal therapeutic benefit. We herein developed a new strategy to induce catastrophic NAD depletion by concurrently impairing NAD synthesis and promoting NAD consumption. We designed a series of new compounds that conjugate an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, with a DNA-alkylating agent. Among them, compound 11b exhibited potent anticancer efficacy in cancer cell lines and mouse tumor models with intrinsic resistance to the parent compound FK866 or chlorambucil. Compound 11b caused catastrophic NAD depletion via a synergistic effect between the NAD salvage pathway blockade and DNA damage-triggered NAD consumption. Our findings suggest a new intervention strategy for causing catastrophic NAD depletion in cancer cells and provide basis for the development of new inhibitors targeting NAD metabolism.


Assuntos
NAD , Neoplasias , Animais , Camundongos , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
15.
Bone Res ; 11(1): 60, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940665

RESUMO

Matrix vesicles (MVs) have shown strong effects in diseases such as vascular ectopic calcification and pathological calcified osteoarthritis and in wound repair of the skeletal system due to their membranous vesicle characteristics and abundant calcium and phosphorus content. However, the role of MVs in the progression of osteoporosis is poorly understood. Here, we report that annexin A5, an important component of the matrix vesicle membrane, plays a vital role in bone matrix homeostasis in the deterioration of osteoporosis. We first identified annexin A5 from adherent MVs but not dissociative MVs of osteoblasts and found that it could be sharply decreased in the bone matrix during the occurrence of osteoporosis based on ovariectomized mice. We then confirmed its potential in mediating the mineralization of the precursor osteoblast lineage via its initial binding with collagen type I to achieve MV adhesion and the subsequent activation of cellular autophagy. Finally, we proved its protective role in resisting bone loss by applying it to osteoporotic mice. Taken together, these data revealed the importance of annexin A5, originating from adherent MVs of osteoblasts, in bone matrix remodeling of osteoporosis and provided a new strategy for the treatment and intervention of bone loss.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Calcificação Vascular , Animais , Camundongos , Anexina A5/metabolismo , Calcificação Fisiológica/fisiologia , Matriz Óssea/metabolismo
16.
Int J Oral Sci ; 15(1): 50, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001110

RESUMO

Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.


Assuntos
Odontogênese , Raiz Dentária , Feminino , Humanos , Raiz Dentária/metabolismo , Células Epiteliais , Diferenciação Celular , Materiais Biocompatíveis/metabolismo
17.
J Med Chem ; 66(23): 15699-15714, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983010

RESUMO

Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 µg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/patologia , Triptofanase , Reposicionamento de Medicamentos , Neoplasias do Colo/tratamento farmacológico
18.
Front Physiol ; 14: 1247587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841320

RESUMO

Objective: The objective of this research is to construct a method to alleviate the problem of sample imbalance in classification, especially for arrhythmia classification. This approach can improve the performance of the model without using data enhancement. Methods: In this study, we have developed a new Multi-layer Perceptron (MLP) block and have used a Weight Capsule (WCapsule) network with MLP combined with sequence-to-sequence (Seq2Seq) network to classify arrhythmias. Our work is based on the MIT-BIH arrhythmia database, the original electrocardiogram (ECG) data is classified according to the criteria recommended by the American Association for Medical Instrumentation (AAMI). Also, our method's performance is further evaluated. Results: The proposed model is evaluated using the inter-patient paradigm. Our proposed method shows an accuracy (ACC) of 99.88% under sample imbalance. For Class N, sensitivity (SEN) is 99.79%, positive predictive value (PPV) is 99.90%, and specificity (SPEC) is 99.19%. For Class S, SEN is 97.66%, PPV is 96.14%, and SPEC is 99.85%. For Class V, SEN is 99.97%, PPV is 99.07%, and SPEC is 99.94%. For Class F, SEN is 97.94%, PPV is 98.70%, and SPEC is 99.99%. When using only half of the training sample, our method shows that the SEN of Class N and V is 0.97% and 5.27% higher than the traditional machine learning algorithm. Conclusion: The proposed method combines MLP, weight capsule network with Seq2seq network, effectively addresses the problem of sample imbalance in arrhythmia classification, and produces good performance. Our method also shows promising potential in less samples.

19.
BMC Nephrol ; 24(1): 280, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740193

RESUMO

Rituximab (RTX) and cyclophosphamide (CYC) based treatments are both recommended as first-line therapies in idiopathic membranous nephropathy (IMN) by KDIGO 2021 guideline. However, the efficacy of RTX vs. CYC-based treatments in IMN is still controversial. We performed this systemic review and meta-analysis registered in PROSPERO (CRD 42,022,355,717) by pooling data from randomized controlled trials or cohort studies in IMN patients using the EMBASE, PubMed, and Cochrane libraries (till Orc 1, 2022). The primary outcomes were the complete remission (CR) rate + partial remission (PR) rate. CR rate, immunologic response rate, relapse rate, and the risk of serious adverse events (SAE) were secondary outcomes. Eight studies involving 600 adult patients with IMN were included with a median follow-up duration of 12 to 60 months. RTX induced a similar overall remission rate compared with CYC (RR 0.88, 95% CI: 0.71, 1.09, P = 0.23). At the follow-up time of 6 months, RTX was associated with a lower CR + PR rate compared with CYC (RR 0.67, 95% CI: 0.52, 0.88, P = 0.003). Moreover, RTX might be less effective in inducing CR + PR than CYC treatment in IMN patients with high antiPLA2R antibody levels (RR 0.67, 95% CI: 0.48, 0.94, P = 0.02). The occurrences of CRs, relapse rates, immunologic response rates, and SAE were not significantly different between RTX and CYC, respectively. In conclusion, although the long-term efficacy and safety of CYC compared to RTX were comparable, CYC might respond faster and be more advantageous in IMN patients with high antiPLA2R antibody titers.


Assuntos
Glomerulonefrite Membranosa , Adulto , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Rituximab/uso terapêutico , Ciclofosfamida/uso terapêutico , Pacientes
20.
Int J Oral Sci ; 15(1): 33, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558690

RESUMO

Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/ß-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/ß-catenin signaling via high expression of LGR6 promoted by HnRNPK.


Assuntos
Cementogênese , RNA Longo não Codificante , Camundongos , Animais , Via de Sinalização Wnt , beta Catenina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , RNA Longo não Codificante/genética , Hormônio Paratireóideo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...